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Popular Summary

Shen _

In this paper, we address the fundamental issue of overcoming the so-called "spring

predictability barrier", i.e., the dramatic drop in prediction skills from boreal spring to

summer, that is endemic in forecasting of seasonal rainfall anomalies over the United

States based on E1 Nifio. For this purpose, we seek to maximize the predictive

information for seasonal precipitation forecast over the US from a variety of predictor

fields, by developing an ensemble canonical correlation (ECC) prediction scheme. The

ECC carries out independent forecasts from various predictor fields, e.g., SST, soil

moisture and snow cover, and then optimally combine the individual forecasts to produce

an ensemble forecast. Using 49 years (1951-1999), we apply the ECC to forecast

seasonal rainfall anomalies over the US from SST in five non-overlapping sectors: the

tropical Pacific, North Pacific, tropical Atlantic, North Atlantic and the Indian Ocean.

Results show that ECC yields a remarkable (10-20%) increase in the baseline prediction

skills for all regions of the US and for all seasons compared to traditional statistical

prediction schemes. We find that while El Nifio provides the bulk of the precipitation

prediction skill for the boreal winter in the southern-tier states of the US, the regions of

the northern Great Plains and the mid-west are not directly affected by El Nino, but rather

from SST signals in the North Pacific in boreal summer. Most importantly, the ECC

significantly reduces the spring predictability barrier over the conterminous US, and

substantially raises the skill bar for dynamical seasonal rainfall prediction.
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Abstract

Results from a new ensemble canonical correlation (ECC) prediction model yield a

remarkable (10-20%) increase in baseline prediction skills for seasonal precipitation over

the US for all seasons, compared to traditional statistical predictions. While the tropical

Pacific, i.e., E1 Nino, contributes to the largest share of potential predictability in the

southern tier States during boreal winter, the North Pacific and the North Atlantic are

responsible for enhanced predictability in the northern Great Plains, Midwest and the

southwest US during boreal summer. Most importantly, ECC significantly reduces the

spring predictability barrier over the conterminous US, thereby raising the skill bar for

dynamical predictions.



It is well knownthatseasurfacetemperature(SST)in thetropical Pacificassociated

with the E1Nino underpinsthe enhancedforecastingskill for the United States(US)

precipitation during the boreal winter. However the skill drops dramatically in the

spring,reachesa minimum in thewarm season,andrisessteadily from fall to winter (1,

2). The dramatic reduction in forecast skill from winter to summer through the spring

season is known as the "spring predictability barrier" which has been endemic in both

statistical and dynamical forecasts of E1 Nino (3). Recently, using singular value

decomposition, significant predictability was found from the tropical and extratropical

Pacific SST on the warm season precipitation over the upper Great Plains and Atlantic

States of the US during E1 Nino summers (4). The increased predictability is a

quantitative validation of earlier findings on the relation between the US precipitation and

the tropical and North Pacific SST (5, 6). However, the forecasting skill was still

relatively low in summer, even during time of strong SST signal in the tropical Pacific.

It has been suggested that the reduced precipitation predictability in the summer

over the US stems from the weaker, and more poleward position of the upper level

westerly flow in the northern hemisphere, making it more difficult for tropical SST

influence to be transmitted to the US continent (7). As a result, the influence of tropical

Pacific SST on the US summertime precipitation diminishes significantly. However,

climate variability in other regions, especially the extratropics may begin to have an

impact on US precipitation in summer (8). The North Atlantic Oscillation and the North
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Pacific Oscillationhavestrongimpressionson the SSTover the North Atlantic andthe

North Pacific, respectively, which can be used as potential predictors for US

precipitation. However,dueto thevastareaand dominantSSTvarianceof the tropical

Pacific, the E1Nino/SouthernOscillation (ENSO) tendsto overshadowany influences

from SSTin otheroceanbasins. In additionto SST,otherfactorssuchassoil moisture,

snowcoverandvegetationmayinfluenceUSprecipitationpredictability for both summer

andwinter (9, 10). The ensemble canonical correlation (ECC) prediction model has been

developed at the NASA/Goddard Space Flight Center, with the purpose of systematically

exploring potential predictability associated with the aforementioned factors.

Mathematical details of the ECC scheme and preliminary results have been reported (11).

In this article, the ECC prediction model is introduced and results for seasonal US

precipitation prediction is presented. By deriving maximal predictive information from

SST independently from ocean basins, the ECC yields a substantial increase in the

baseline prediction skill for US seasonal precipitation for all seasons, and greatly reduces

the spring predictability barrier.

Data and the ECC Method

The precipitation data used for this study are derived from optimal interpolation

from over 17,000 stations in the Global Historical Climatological Network Version 2 and

the Climate Anomaly Monitoring System for the period 1951-1999 (12). The data cover

the global land with a spatial resolution of 2.5 degrees latitude-longitude. In this work,

only data over the US continent are used. The SST data are obtained from the US



National Center for Environmental Prediction for the same period with a spatial

resolutionof 2 degreeslatitude-longitude(13).To reducesmall-scalenoise,theSSTdata

arefurtheraveragedto boxesof 6 degreeslongitudeand4 degreeslatitude.

The ECC prediction model is based on linear regressions that maximize the

correlation between the weighted integral of SST and precipitation fields (14). The

discretization of the canonical correlation in EOF spectral space for the spatially

continuous predictor and predictand fields leads to an equal area-factor correction. The

regression error is estimated for each EOF mode (11). The inclusion of the error

estimation and area-factor represents an improvement of the Canonical Correlation

Analysis (CCA) method used for operational forecasts at the US Climate Prediction

Center (2, 15).

The ECC procedure is described briefly in the following. First, the monthly

anomaly data of SST and precipitation are obtained by removing the 49-year climatology

and linear trend and normalized by the sample standard deviation at each grid box. Next,

the matrix for the correlation eigen-problem is solved in the EOF space to obtain the

maximum correlation between the canonical correlation variables of SST and

precipitation. The predicted precipitation field, P(t+AO, is then expressed in terms of the

canonical variables of SST(O, where t denotes time and At is the forecast lead time. To

maximally extract precursory signals in global SST, the world ocean is partitioned into

non-overlapping sectors, and separated forecasts are made based on different ocean

sectors. The ensemble forecast is then obtained at each grid box as a weighted average,

4



of the individual forecastssimilar to the "super-ensemble"technique(16). An added

benefit of the ECCapproachis that by ranking the skills of the individual forecastsat

eachgrid box, it is possibleto identify which oceanbasinscontributemaximally to the

precipitationpredictabilityoverspecificsub-areasof theUScontinent.

For the hindcastsof a particular year, the EOFsandcanonicalcorrelationof SST(t)

and P(t+AO are computed using the other 48 years. In this way, 49 hindcasts can be

obtained. For evaluating the potential predictability, At is zero. The zero-lag

"prediction" represents the maximal predictability for precipitation given perfect

knowledge of the simultaneous SST field. Alternatively, the zero-lag ECC prediction can

be used in conjunction with a two-tier forecast scheme in which the SST is predicted by

an ocean model or a coupled model. When At >0, the ECC method can be used as a

stand-alone statistical forecast scheme.

Evaluation of Potential Predictability

To evaluate the forecast skill, a number of precipitation forecast skill scores,

including the spatial pattern correlation, Hiedke (2-category) score, and the three-

category "hit" score, have been computed (4). The results reported here are robust and

independent of the choice of skill score. For brevity, only the three-category hit scores

are discussed here. For each grid box, the observed precipitation values for a given

season in 49 years are sorted in ascending order. Three categories are formed according

to the first third (below normal), the middle third (normal), and the last third percentiles



(above normal). If the forecast and observed precipitations are in the same category, the

forecast is a "hit". The forecasting skill is the hit rate, which is the number of correct

forecasts divided by the total number of years, i.e., 49. For a no-skill random forecast,

the expected hit score is 33.33%. For a sample size of 49 years the hit rate of 45%

(48%) is significantly different from a random forecast at the 5% (1%) significant level.

As a test of the ECC, the hit scores for US wintertime (DJF) and summertime (JJA)

predictions averaged over 49 years, based on SST in individual ocean basins, have been

computed. The ocean basins are the tropical Pacific (TPAC, 30°S-30°N), the North

Pacific (NPAC, north of 30°N), the tropical Atlantic (TATL, 30°S-30°N), the North

Atlantic (NATL, north of 30°N), and the Indian Ocean (IND, north of 30°S). We have

also computed the skill score using the global ocean, i.e., all ocean basins. The all-ocean

skill score is comparable to that computed from TPAC, because of the dominance of the

ENSO signal in an all-ocean SST EOF decomposition. In all the results shown, six

dominant EOF modes are used. The skill scores vary only slightly if more EOFs have

been used. Fig. 1 shows the DJF forecast results using the SST from TPAC, NPAC,

TATL, and NATL. Fig. l a indicates that TPAC has the overall highest score and the

most spatially coherent score pattern, concentrating in the southwest US/Mexico and the

southeast US. The NPAC (Fig. l b) contributes significant scores (>45%) in the west and

southwest of US and the Great Lakes and Ohio Valley. The TATL (Fig. lc) and IND (not

shown) appear to have the least skill scores, compared to the other ocean basins while the

NATL (Fig. ld) is responsible for the high hit rates in the Pacific Northwest, northeast



andsouthwestUS. The skill scorefor theborealsummer (JJA) from every ocean basin,

as shown in Fig. 2, is much reduced and less organized, with the exception of the NPAC,

which appears to produce significant prediction skill in a region stretching from the Gulf

Coast of Texas to the northem Great Plains and the Midwest. The skill scores shown in

Figs. 1 and 2 are comparable to and slightly better than those of traditional CCA methods

(1)

To evaluate the influence of each ocean basin on precipitation prediction over

different regions of the US, each grid box identifies the ocean basin of "maximal"

influence, based on the highest temporal correlation between predicted and observed

precipitation in 49 years. Fig. 3 shows the distribution of the "influence function" for US

precipitation predictability for all four seasons. During DJF (Fig. 3a), it is clear that the

TPAC has the strongest influence across the southern states, spanning the southwest,

Mexico, the Gulf Coast, the southeast and the eastern seaboard. The TPAC influence

reaches up to the mountain states and central US. The NPAC has the strongest influence

in the Ohio Valley and the northwest, while the NATL controls the northeastern

seaboard, Northern California, Idaho, and Montana. During MAM (Fig. 3b), the

influence of the TPAC reduces substantially, while the NATL gains influence in the

northeast and along the East Coast. Other regions appear to have competing, but

generally weaker influences (relative to the wintertime) from different ocean basins. The

previously noted lower skill score in JJA is also reflected in the rather disorganized

pattern of the influence function all over the US (Fig. 3c), with perhaps the exception of



northernGreatPlainswhich hasthestrongestinfluencefrom theNorth Pacific. The JJA

pattern suggestsa lack of single dominant SST-relatedforcing mechanism for US

summertimeprecipitationvariability. In SON (Fig. 3d), the dominantinfluencefrom the

NPAC emergesover the Pacific Northwest,the centralmountainand southweststates,

and the NorthernGreat Plains/Midwestregion.Elsewhere,the TATL appearsto have

gainedinfluencerelativeto theotheroceanbasins. It is clearfrom the foregoingresults

that El Nino effect, throughSST in the TPAC, is not alwaysthe major contributor to

rainfall signalover the US, especiallyin the northernsummer. The ECC forecastwill

capitalizeon theadditionalSSTinformationfrom oceanbasinsbesidestheTPAC.

The ECC forecast is obtained from each individual ocean-basinforecast by

assigninganappropriateweight for eachforecastat everygrid point. In this article,we

will show results for the simplestversion of the ECC forecast,which is obtainedby

assigninga weight of oneto the mostskillful forecastandzero to the rest,basedon the

49-yeartrainingperiod. Theresult of this ECC is not too different from thosebasedon

the super-ensembleapproach(16) with forecastweightsproportional to the regression

coefficient. From a comparisonof Fig. 4 and Figs. 1 and 2, it is clear that the ECC

forecastsraisesthe skill scorein all regions,relative to the forecastsfrom individual

oceanbasinsaswell as from the global ocean(not shown)regardlessof the season.In

DJF, the skill score increasessubstantiallyin the Pacific Northwest and the Great

Lakes/OhioValley, most due to the inclusion of SSTsignal from the NPAC and the

NATL (seeFig. 1). In JJA, theareaswith significantlygreaterthanrandomforecastskill
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at 5%significancelevel increasesubstantially,especiallyin northerntier statesandin the

southwest.The increasedscorein JJA forecastis mostly derived from SSTsignal from

theNPAC andNATL. Note thatthe49-yearmeanECCskill scoresfor DJF andJJA are

generallyhigher and covermoreareasthan the previousstudy(4) that was for ENSO

yearsonly.

Theincreasein skill scoreby the ECCis veryrobustandis applicableto all regions

and all seasons. This claim is supported by considering six representative regions (shown

in Fig. 5) of the US, i.e., the North American Monsoon (NAM) region, the Pacific North

West (PNW), West Coast/Mountain States (WCfMS), Northern Great Plain/Midwest

(NGP/MW), the Gulf Coast (GC), and the Mid-Atlantic (MA). Fig. 6 shows the 49-year

mean skill scores for ECC and those for the five individual basins for three-month mean

running throughout the entire annual cycle, averaged over the six regions. In Fig. 6, each

abscissa month represents a forecast of a three-month mean precipitation centered at the

month. For all regions, regardless of the time of the year, there is a substantial increase,

ranging from 10-25%, in the ECC skill score compared to those from individual basins.

The increase is most notable in the spring and summer, thus greatly reducing the spring

predictability barrier. In regions, such as NAM and the GC, the increase in ECC skill is

only modest during the boreal winter, presumably because all the predictable SST signal

is due to El Nino, which is already maximally extracted from the tropical Pacific.

However in other regions such as WC/MS, PNW, and NGP/MW, the wintertime skill

scores are also substantially increased.
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Most interesting,the NGP/MW regionsshowa skill scoreof approximately50%

(> 33.33%at less than 1%significancelevel) for both summerand winter. In the one-

seasonlag forecast(not shown),the skill scorefor this region is actuallyhigher in the

summerthanin thewinter,mainlydueto theimpactof theNorth PacificSST.This result

is consistentwith therecentfindings (17, 18), which showed that enhanced summertime

precipitation in the northern Great Plains and Midwest may be related to the occurrence

of recurrent global monsoon modes which has strong SST signature in the North Pacific.

Potential Application of ECC

Results of the ECC forecast model for US seasonal precipitation prediction have

shown a remarkable across-the-board increase in prediction skill for all regions regardless

of the time of the year. Further increase in skill scores is achieved by stratifying the data

according to phases of major climate events such as ENSO and the North Atlantic

Oscillation. It is worth noting that the ECC skill reported here, averaged over 49

forecasts, without stratifying, is comparable to or better than the prediction skill of the

previous study for ENSO events (4). When the skill scores are stratified according to E1

Nino and La Nina, results (not shown) indicate additional improvement in forecast skills

(>60-70% hit rates) can be achieved in the NGP/MW and NAM Region (19). Another

significance of the ECC forecasting is its implicit use of the nonlinear interaction among

the SSTs over different ocean basins and precipitation over the US. The nonlinearity is

reflected in the forecasting results since the ECC forecast from all oceans is far better

than the sum of the forecasts from individual ocean basins and the forecast from the
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entiretyof all globaloceans. We note that predictabilitymay alsobe furthermined by

including soil moisture, snow cover, and other regional data that provide additional

information independentof largescaleSST. Finally, theECCforecastscanbe appliedto

other climate subsystemsand, in conjunctionwith further diagnostic or model studies

will enablea betterunderstandingof the dynamic links betweenclimate variationsand

precipitation,not only for theUSbut alsofor othercontinentalregions.
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Figure Captions

Fig. 1. Three-category hit score (%) for DJF precipitation prediction derived from SST

anomalies from a) Tropical Pacific, b) North Pacific, c) Tropical Atlantic, and d) North

Atlantic. A hit score of 33% or less indicates the absence of prediction skill. At 5% and

I% significance levels, the greater than 33% hit scores are approximately 45% and 48%

respectively. The area with the hit score greater than or equal to 45% is shaded.

Fig. 2. Same as in Fig. 1, except for JJA.

Fig. 3. The "influence function" on US precipitation by SST from dominant variability in

different ocean basins. The

corresponding ocean basins.

color indicates the most important influence from the

For example, the red region is most influenced by the

Tropical Pacific: (a) Season DJF, (b) season MAM, (c) season JJA, and (d) SON.

Fig. 4. The spatial distribution of the ECC precipitation skill score over the US for (a)

DJF and (b) JJA. The area with the hit score greater than or equal to 45% is shaded.

Fig. 5. Boxes showing geographic locations of the regions as labeled.

Fig. 6. The seasonal cycle of the mean seasonal forecast skill for the selected regions: (a)

North American Monsoon, (b) Pacific Northwest, (c) West Coast and Mountain States,

(d) Great Plains and Midwest, e) Gulf Coast, and f) Mid- Atlantic coast. The thick solid

line indicates the ECC forecast. The forecasts from the five individual ocean basins are as

indicated, e.g., the red solid line represents the skill from the TPAC.
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Fig. 1. Three-category hit score (%) for DJF precipitation prediction derived from SST

anomalies from a) Tropical Pacific, b) North Pacific, c) Tropical Atlantic, and d) North

Atlantic. A hit score of 33% or less indicates the absence of prediction skill. At 5% and

1% significance levels, the greater than 33% hit scores are approximately 45% and 48%

respectively. The area with the hit score greater than or equal to 45% is shaded.
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Fig. 2. Same as in Fig. 1, except for JJA.
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(d) Great Plains and Midwest, e) Gulf Coast, and f) Mid- Atlantic coast. The thick solid

line indicates the ECC forecast. The forecasts from the five individual ocean basins are as

indicated, e.g., the red solid line represents the skill from the TPAC.
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